In vivo magnetic resonance imaging of hyperpolarized silicon particles
نویسندگان
چکیده
منابع مشابه
In vivo magnetic resonance imaging of hyperpolarized silicon particles.
Silicon-based micro- and nanoparticles have gained popularity in a wide range of biomedical applications due to their biocompatibility and biodegradability in vivo, as well as their flexible surface chemistry, which allows drug loading, functionalization and targeting. Here, we report direct in vivo imaging of hyperpolarized (29)Si nuclei in silicon particles by magnetic resonance imaging. Natu...
متن کاملSilicon nanoparticles as hyperpolarized magnetic resonance imaging agents.
Magnetic resonance imaging of hyperpolarized nuclei provides high image contrast with little or no background signal. To date, in vivo applications of prehyperpolarized materials have been limited by relatively short nuclear spin relaxation times. Here, we investigate silicon nanoparticles as a new type of hyperpolarized magnetic resonance imaging agent. Nuclear spin relaxation times for a vari...
متن کاملLong-T1 Silicon Nanoparticles for Hyperpolarized Magnetic Resonance Imaging
Introduction The use of nanoparticles for biomedical applications has benefited from rapid progress both in the nanoscale synthesis of materials with specific optical [1] and magnetic properties [2], and in the biofunctionalization of surfaces, allowing targeting in-vivo tracking, and therapeutic action [3]. For magnetic resonance imaging (MRI), superparamagnetic nanoparticles [2] have extended...
متن کاملHyperpolarized Noble Gas Magnetic Resonance Imaging
Introduction Hyperpolarized noble gas magnetic resonance imaging (HP gas MRI) is a new and innovative imaging method that has made it possible, for the first time, to obtain high resolution MR images of air-filled organs such as the lungs, as well as lipid rich tissue such as the brain. Unlike conventional MRI which relies on the detection of water protons in biological tissue, HP gas MRI is ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Nanotechnology
سال: 2013
ISSN: 1748-3387,1748-3395
DOI: 10.1038/nnano.2013.65